Interactions of the Major Biogeochemical Cycles

Global Change and Human Impacts

Edited by
Jerry M. Melillo, Christopher B. Field, and Bedrich Moldan

A project of SCOPE, the Scientific Committee on Problems of the Environment, of the International Council for Science

ISLAND PRESS
Washington • Covelo • London
Biogeochemical Interactions and Biodiversity
Valerie T. Eviner and F. Stuart Chapin III

There has been considerable recent interest in the ecosystem consequences of global and regional shifts in biogeochemical cycling and the loss of species diversity. Since biogeochemical cycling is the result of an interaction of numerous organisms, the link between diversity and biogeochemistry is a natural one. Changes in either diversity or biogeochemical cycling can dramatically influence one another, and the large human impact on both has the capacity to compromise the ecosystem functions on which society relies.

A number of significant changes are occurring in the Earth's biogeochemistry (Austin et al., Chapter 2, this volume; Galloway, Chapter 14, this volume; Chapin et al. 2000). Because of these shifts in global and regional biogeochemistry, as well as land use changes and the introduction of exotic species, we are in the midst of one of the largest extinction events in the history of life on Earth, with extinction rates 100–1,000 times greater than prehuman rates. The ecosystem response to these multiple biogeochemical shifts depends largely on the response of the biotic community. For example, shifts in vegetation in response to these human-induced changes can have ecosystem impacts that are larger and different in direction than the direct biogeochemical response to these changes (Hobbs 1996; Shaw and Harte 2001). Beyond a shift in composition, loss of diversity can compromise the capacity of a community to perform ecosystem functions, particularly in response to multiple stresses (Griffiths et al. 2000; Degens et al. 2001; Muller et al. 2002).

In this chapter we explore the feedbacks between changes in biogeochemical interactions and biodiversity. Plant species richness is the component of biodiversity that is most frequently studied in relationship to ecosystem function, but we include other examples where they are available.
Effects of Changes in Biogeochemical Cycling on Diversity

Shifts in the biotic community in response to a variety of biogeochemical changes have been well documented (Table 8.1). Deposition of toxic levels of heavy metals and \(\text{SO}_2 \) can decrease the diversity of plants, soil microbes, and several other types of organisms. These decreases in species richness are directional changes through selection for species that can tolerate levels of pollutants that are potentially toxic to many organisms (Table 8.1). The differential responses of components of the biotic community to these pollutants can have significant impacts on biogeochemical cycling. For example, heavy metals suppress \(\text{N}_2\text{O} \) production more than NO production (Holtan-Hartwig et al. 2002).

Plant diversity substantially decreases in response to chronic N inputs across a large number of ecosystems through selection for fast-growing plant species and canopy dominants and selection against legumes and small-statured species. N deposition also causes shifts in microbial community composition and diversity (Table 8.1). Additions of other limiting nutrients in terrestrial systems do not have as strong an effect on community diversity as does N. For example, even though P was the most limiting nutrient to plant growth, P additions did not alter plant species richness in a chalk grassland, whereas N additions substantially decreased plant species diversity (Willems, Peet, and Bik 1993). Similarly, in an annual grassland, additions of P and K had very little effect on plant community composition, whereas additions of N decreased species richness (Goldberg and Miller 1990). These results show that N additions tend to have strong impacts on plant species diversity, whereas community composition has variable responses to additions of other nutrients, even if they are limiting.

Eutrophication by N and P in aquatic systems also tends to decrease the diversity of aquatic organisms and selects for plants that are good competitors at high nutrient levels and for animals that tolerate low oxygen levels. In both aquatic and terrestrial habitats, these directional changes in community composition are likely to determine the ecosystem effects of resource additions (Fridley 2002).

The effects of elevated CO\(_2\) on plant and microbial community composition are variable. Elevated CO\(_2\) often results in a change in plant and microbial species composition, but there are no generalizable responses in the nature of species that are selected for. Several studies, however, have found that elevated CO\(_2\) increases plant species evenness (proportionate distribution of species) (Table 8.1).

Although climate is not specifically a biogeochemical change, increased fluxes of CO\(_2\), CH\(_4\), and \(\text{N}_2\text{O} \) into the atmosphere are resulting in warming and possible changes in precipitation patterns that will likely impact the biological community. Changing weather patterns will cause directional shifts in species composition and diversity, based on the life history of the species (Sternberg et al.
Table 8.1. Shifts in the biotic community in response to a variety of biogeochemical changes

<table>
<thead>
<tr>
<th>Biogeochemical change</th>
<th>Diversity change</th>
<th>Selection for species</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₂ deposition</td>
<td>Decreased species richness of:</td>
<td>Selection against sensitive species</td>
</tr>
<tr>
<td></td>
<td>plants¹</td>
<td></td>
</tr>
<tr>
<td></td>
<td>soil microarthropods²</td>
<td></td>
</tr>
<tr>
<td></td>
<td>macroinvertebrates³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ants⁴</td>
<td></td>
</tr>
<tr>
<td>Heavy metals</td>
<td>Decreased species richness of:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>plants⁵</td>
<td></td>
</tr>
<tr>
<td></td>
<td>microbes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>aquatic macroinvertebrates⁹</td>
<td></td>
</tr>
<tr>
<td>N additions</td>
<td>Terrestrial plants—decreased richness¹¹</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aquatic organisms—decreased plant diversity¹⁴</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mycorrhizal diversity decreases¹⁶</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Soil microbes</td>
<td></td>
</tr>
</tbody>
</table>

(continued on next page)
Table 8.1. (continued)

<table>
<thead>
<tr>
<th>Biogeochemical change</th>
<th>Diversity change</th>
<th>Selection for species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevated CO₂</td>
<td>Plants—increased evenness, but no change in richness¹⁹</td>
<td>Shifts in plant species composition, but no consistent groups of species selected for, some evidence of selection against dominants²⁰</td>
</tr>
<tr>
<td></td>
<td>Microbes</td>
<td>Larger effects on composition than diversity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shifts in composition but not consistent²¹</td>
</tr>
<tr>
<td>Warming</td>
<td>Plants</td>
<td>Shifts in plant composition, selection for species depends on other environmental conditions²²</td>
</tr>
<tr>
<td></td>
<td>Microbes—increased diversity²³</td>
<td>Preferential stimulation of methanogens over methane-oxidizers²⁴</td>
</tr>
<tr>
<td></td>
<td>Soil mesofauna—increased diversity if moisture is not limiting²⁵</td>
<td></td>
</tr>
</tbody>
</table>

Several studies have shown that warming influences plant species composition through selection for certain plant species (Harte and Shaw 1995; Chapin and Korner 1996; Hobbie 1996), although this is not always the case (Price and Waser 2000). These shifts in vegetation composition are largely responsible for ecosystem responses to warming (Hobbie 1996; Saleska, Harte, and Torn 1999; Shaw and Harte 2001). Similarly, an increase in microbial diversity in response to warming increases soil C respiration (Andrews et al. 2000), while preferential stimulation of methanogenic bacteria over methane-oxidizers could stimulate increased CH$_4$ flux from wetland soils (Schlesinger 1997).

Clearly, changes in biotic diversity in response to biogeochemical factors are not random additions or deletions of species; they are selective changes in species composition. Resulting changes in biogeochemical processes may be better explained by these changes in species composition than by changes in species richness.

The Ecosystem Effects of Species Diversity

Mechanisms

Many components of biological diversity could be important in determining ecosystem processes. Most studies have focused on the ecosystem consequences of species richness within a group of organisms (e.g., plant species diversity or microbial diversity). The most commonly proposed mechanism for a diversity effect on ecosystem function is complementarity. Organisms differ in their niches, including how, when, and where they play their role, and the combination of species with different niches can affect ecosystem function in ways that differ from the effects of any single species. For example, species differences in the type, timing, or spatial zone of resource uptake can enhance overall community resource utilization, leading to an increase in plant production. The more unique the niches of the species are, the greater the diversity effect.

The observed relationships between diversity and ecosystem functions may also be explained by the "sampling effect" (Aarssen 1997; Huston 1997). The sampling effect is based on one or a subset of species with strong ecosystem effects. In this case, the relationship between species richness and ecosystem function is not a mechanistic effect of diversity per se, but rather, it is due to an increased statistical probability of including a particular species in a community of higher diversity.

A third mechanism, "interspecific facilitation" (Cardinale, Palmer, and Collins 2002), has received less attention in the literature. Like complementarity, this ecosystem effect is a result of the activity of multiple organisms. Whereas complementarity is a function of the accumulated independent effects of the component species, in interspecific facilitation, the function and sometimes the existence
of these species complexes rely on close interactions among the component species. Some examples include symbiotic N fixation and substrate degradation that can only be achieved by a closely associated community of microbes (consortia). Extreme examples are eukaryotic cells and their intracellular units that are endosymbiotic prokaryotes or the descendents of these (e.g., mitochondria, chloroplasts, S-oxidizing bacteria, methanogens, methane-oxidizing bacteria) (Caldwell et al. 1997).

A fourth alternative is that there is no mechanistic effect of diversity on particular ecosystem processes; rather diversity and an ecosystem process co-vary because they are controlled by the same environmental factor. This is not a mechanism that can explain direct experimental manipulations of diversity, but it can be an important consideration when comparing natural systems or experimental treatments in which species richness is manipulated through a change in environmental factors (e.g., Huston 1997; Wardle 2001). For example, when comparing community diversity and productivity in unmanipulated natural plots in very low-productivity environments, the correlation between productivity and diversity may not be causative but due to the fact that both are limited by the same resources (Wardle 2001).

At a mechanistic level, sampling effects, complementarity, and interspecific facilitation all depend on a mixture of species that differ in a key trait or combinations of traits. These mechanisms are not mutually exclusive, and the importance of these multiple mechanisms highlights a critical feature of biological diversity: a given function can be attained through multiple pathways.

The Effects of Biological Diversity on Different Ecosystem Functions

Species diversity can influence many ecosystem processes, but ecosystem processes differ in their relationships to diversity and/or composition of the biotic community. The strongest relationships between species richness and ecosystem processes are for those processes that are directly related to resource utilization (reviewed in Eviner and Chapin, in review). A number of studies have observed a positive relationship between plant richness (Naeem et al. 1994; Tilman et al. 1997; Hooper and Vitousek 1998; Mulder, Uliassi, and Doak 2001) or mycorrhizal richness (van der Heijden et al. 1998) and plant productivity. Increased productivity in response to increased plant species richness can be mediated through complementarity in the use of various resources, but this relationship is often weak and is usually better explained by the presence of highly productive species (Naeem et al. 1994; Tilman et al. 1997; Hooper and Vitousek 1998; Speth et al. 2000a; Mulder, Uliassi, and Doak 2001). Plant species richness also contributes to nutrient and water retention, but again, species composition usually plays a

Much as plant species richness can enhance productivity through complementarity of resource use, a diverse microbial community may enhance decomposition of litter or soil organic matter through the same mechanism (Solanius 1981; McGrady-Steed, Harris, and Morin 1997; Dobranic and Zak 1999). Decomposition rates are not, however, always enhanced by increased diversity of microbial communities because the identity of species plays a larger role than their number (Finlay, Maberly, and Cooper 1997). For example, selection for certain microbes can enhance decomposition of plant residues despite decreases in microbial community diversity (Griffiths et al. 2000). Microbial community composition can also affect the degradation of specific compounds (Janzen, Dormaar, and McGill 1995; Colombo, Cabello, and Arambarri 1996; De Boer, Klein Gunnewiek, and Parkinson 1996). There are many substrates, particularly environmental contaminants, that cannot be degraded by isolated populations of microbes, but only by consortia (Rozgaj and Glancersoljan 1992; Caldwell et al. 1997), particularly in anaerobic environments (Palmer et al. 1997). Composition of the microbes within consortia can dramatically alter degradation rates (Wolfaardt et al. 1994), indicating that the effects of a community on degradation are due not only to the number of species, but also to their composition.

Similar to decomposition, rates of nitrification, denitrification (Martin, Trevors, and Kaushik 1999; Griffiths et al. 2000), and methane oxidation (Willson et al. 1997; Griffiths et al. 2000) relate to microbial diversity and are also strongly influenced by the composition of the microbial community (Landi et al. 1993). Overall, it is clear that microbial community composition can have strong impacts on ecosystem function (Colombo, Cabello, and Arambarri 1996; De Boer, Klein Gunnewiek, and Parkinson 1996; Balser, Kinzig, and Firestone 2001).

While microbial diversity can enhance decomposition and nutrient cycling, plant composition generally has a stronger effect on these processes, because the species composition of the plant community determines the substrates available for microbial utilization. Although the identity of plant species has strong effects on these processes, there is little reason to hypothesize an effect of plant species richness on these processes. All experimental evidence indicates that decomposition rates are not related to plant species richness, but to plant composition (Naeem et al. 1995; Wardle, Bonner, and Nicholson 1997; Bardgett and Shine 1999; Hector et al. 2000; Spehn et al. 2000b; Knops, Wedin, and Tilman 2001). Several of these studies found that decomposition rates of litter mixtures could not be predicted based on rates of the component species alone (nonadditive effect), suggesting the importance of substrate mixtures, but these were both positive and negative effects and were largely due to specific combinations of substrates
(species composition), not an increase in the number of litter types (Wardle and Nicholson 1996; Wardle, Bonner, and Nicholson 1997; Hector et al. 2000). There have been a few mechanistic hypotheses linking plant species richness and decomposition rates. Higher diversity treatments tend to have higher percent cover and soil water use, resulting in lower temperature and moisture for decomposition. Although these directional microclimate changes would be predicted to have a negative effect on decomposition, the magnitude of these microclimate effects on decomposition rate was extremely small (Hector et al. 2000). Similarly, plant substrate quality has a larger impact on nutrient mineralization than does plant richness. Although plant species richness can stimulate N cycling through an increase in substrate quantity (Spehn et al. 2000b) or decrease nitrification rates through higher plant NH₄ uptake (Niklaus et al. 2001b), these effects tend to be weaker than the influence of substrate quality on N cycling. This accounts for the frequent observation that the role of richness in ecosystem function is overwhelmed by species composition and environmental factors (Fridley 2002; Loreau 1998; Loreau 2000; Wardle, Bonner, and Barker 2000).

Although species composition is key to a mechanistic understanding of the role of the biotic community in determining ecosystem processes, diversity per se is important to ensuring stability of these species effects. Different functions and environmental tolerances are usually distributed independently among species. There may be redundancy in a function, but it is unlikely that there will be overlap in the suite of functions associated with any species, including functional roles, environmental tolerances, physiological requirements, and microhabitat preferences (Beare et al. 1995). Species diversity is critical for the maintenance of these roles under fluctuating conditions. Diversity provides a community with multiple ways of performing a function, providing stability in biogeochemical processes despite shifts in environmental conditions (McNaughton 1977; Rao and Willey 1980; Chapin and Shaver 1985; McGrady-Steed, Harris, and Morin 1997; Naeem and Li 1997; Griffiths et al. 2000; Degens et al. 2001).

Effects of Species Composition on Interactions among Biogeochemical Cycles

Biogeochemical cycling is largely mediated through the biotic community, which both supplies and metabolizes substrates. Species composition largely controls the ratios at which elements cycle in systems and the potential of these element cycles to interact as a result of the suite of traits, functions, and environmental preferences of the species present in a community.

C, N, S, and P are not cycled in simple stoichiometric ratios because these elements are mobilized and stabilized by different mechanisms (McGill and Cole
N is bonded directly to the C skeleton of organic compounds, and thus mineralization of N is a by-product of the intracellular breakdown of organic compounds by microbes for energy (C). This accounts for the strong relationship between litter C:N and rates of decomposition and net N mineralization. Because P is not directly bonded to the C skeleton of organic matter but is associated with C through ester bonds, mineralization of P occurs through enzymatic activity, which cleaves P from organic matter. Thus mineralization of P from organic matter is not directly related to litter C:P ratio but is controlled more directly by plant and microbial need for P. P can also be accessed by organisms through production of charged organic compounds that can free PO₄ from binding sites in the soil or through accumulation of calcium oxalates that increase P availability by decreasing soil calcium. The control of sulfur release from organic matter is intermediate between N and P because it occurs in organic matter in both C-bonded and ester-bonded forms. Thus, organic S can be released through both microbial C metabolism and directly by biotic demand for S.

Because these elements are stabilized by different mechanisms, the effect of an organism on any one of these elements can be independent of its effect on other elements. For example, grassland plant species with very similar effects on N cycling can differ substantially in their effects on P cycling (Hooper and Vitousek 1998; Evine 2001), water fluxes, and soil C (Evine and Chapin 2001). Similarly, the influence of the plant community on nutrient retention differs for different elements (Naeem et al. 1994, 1995). The functions of species can also vary independently from their environmental tolerances (Evine and Chapin 2001), so shifts in environmental conditions are not likely to select for species with specific suites of functional effects. A notable exception to this is that soil fertility levels often select for plant species that reinforce these levels of fertility (Chapin 1980). Species not only differ in their effects on multiple elements, but also in how they couple multiple elements. The ratios of elements required for optimal growth can differ among species, and many organisms can store nutrients that are in excess at one time and later use them for growth.

The stoichiometry of decomposers can greatly influence rates of N mineralization. Fungi, with a high C:N ratio (15:1–45:1), will mineralize relatively more N than bacteria, which have a low C:N ratio (3:1–5:1) and higher requirement for N (Paul and Clark 1995). For both herbivores and decomposers, the ratio of nutrient release from a given substrate will be determined by the requirements of those organisms for the different nutrients. A species with a higher N:P requirement will recycle N at a relatively lower concentration than a species with a lower N:P requirement (Sterner, Elser, and Hessen 1992; Elser et al. 2000). The balance of nutrients released will change because of shifts in both the species providing the substrate (producers) and the consumers.
The ratios of element uptake and resorption by plants can have substantial effects on biogeochemical interactions, since plant litter is the major substrate for element recycling and fuels many biogeochemical processes. Plant species differ in the ratios of elements taken up to produce new biomass and resorbed prior to litter fall (Aerts and Chapin 2000), so species differences in these properties alter rates at which different elements cycle. For example, many studies have linked plant species effects on decomposition and N cycling to litter C:N ratios (Taylor, Parkinson, and Parsons 1989; Wedin and Tilman 1990; Scott and Binkley 1997; Maithani et al. 1998; Mueller et al. 1998; Mafongoya, Barak, and Reed 2000).

Species differences in C quality of litter also have strong effects on rates of decomposition and mineralization (Melillo, Aber, and Muratore 1982; Aber, Melillo, and McLaugherty 1990; Palm and Sanchez 1991; Taylor et al. 1991; Stump and Binkley 1993; Schimel et al. 1996), because secondary compounds can inhibit microbial activity (Lodhi and Killingbeck 1980; Thibault, Fortin, and Smirnoff 1982). These secondary compounds can be more important than C:N ratios in explaining plant species effects on biogeochemical cycling (Evine 2001).

Although plant regulation of N and C dynamics has largely focused on litter quality, up to a tenfold difference in rates of net N mineralization can occur because of a threefold difference in labile C inputs by different species (Wedin and Pastor 1993). These labile C inputs are generally simple C compounds that are readily available as an energy source to microbes and can accelerate decomposition of recalcitrant litter and soil organic matter (Sallih and Bottner 1988; Mueller et al. 1998; Bottner, Pansu, and Sallih 1999). These recalcitrant C compounds are often not used as an energy source, and microbes often require labile C to provide energy for the metabolism of these recalcitrant compounds in their search for N. Labile C will stimulate decomposition of a recalcitrant compound under N-limited conditions but not under high N availability (van Ginkel, Gorissen, and Van Veen 1996). These examples clearly demonstrate that the biogeochemistry of C is affected not only by an interaction of nutrients, but also by the interaction of different types of C compounds that are produced by different plant species.

Plant composition can also influence biogeochemical cycling by altering microclimate conditions such as temperature, pH, soil moisture, and O₂ concentrations (van Vuuren et al. 1992; Mack 1998; Evine 2001; Caraco and Cole 2002). For example, in waterlogged soils or sediments, plant species that enhance soil O₂ concentrations have been responsible for enhanced decomposition of organic matter (Allen et al. 2002), increased nitrification rates (Engelaar et al. 1995), decreased CH₄ formation (Grosse, Jovy, and Tiebel 1996), and lower consumption of SO₄²⁻ leading to decreased mobilization of Fe and mineralization of P (Christensen 1999). Interactions of plant inputs also determine the fate of nitrate in anaerobic environments by regulating the concentrations of NO₃ and
organic C available to denitrifiers. The amount of C in relation to NO$_3$ is positively correlated to the amount of N$_2$ versus N$_2$O produced by denitrification. At high levels of labile C, however, the fate of NO$_3$ can shift from denitrification to dissimilatory nitrate reduction to ammonium (DNRA) (Fazzolari, Nicolardot, and Germon 1998; Silver, Herman, and Firestone 2001; Yin et al. 2002).

Ultimately, a plant species effect on biogeochemical cycling reflects its suite of traits. For example, an interaction of litter, microclimate effects, and labile C inputs determines plant species effects on net N mineralization and nitrification, soil C dynamics, and decomposition, and these traits vary independently among species (Eviner 2001). This independent distribution of multiple ecosystem functions among species is a key driver of the effect of the biotic community on biogeochemical interactions.

Biogeochemical interactions are also related to species-specific responses of microbes to combinations of substrates and environmental conditions. For example, the effect of N in limiting lignin decomposition depends on the species of white rot fungus present, because N inhibits some species less than others (Schimel 1995). Similarly, variation in methane oxidation with N concentrations depends on the composition of the microbial community (Groffman and Bohlen 1999). Ultimately, the suite of functions and environmental tolerances of a given species will determine the interaction of elements, their stoichiometry, and the interactions of biogeochemical cycling with environmental conditions. By altering environmental conditions and the ratios of available elements, any given species can also influence the distribution and activity of other organisms, further altering biogeochemical interactions. Thus, it is not surprising that the stoichiometry of elements is highly uncoupled in both terrestrial and aquatic ecosystems.

Biogeochemical Interactions and Species Mixtures

The interactions between biogeochemical cycles are mediated by the suite of organismal traits being expressed, and the nature of traits has a much larger role in determining biogeochemical cycling than does the diversity of traits. There is no clear relationship between species richness and biogeochemical interactions because the organismal traits that determine the dynamics of different elements do not consistently occur together when species are compared. The ecosystem effects of species mixtures often cannot be predicted based on the patterns of species effects in monocultures (nonadditive effects), as seen in processes ranging from decomposition (Naem et al. 1995; Wardle and Nicholson 1996; Wardle, Bonner, and Nicholson 1997) to N cycling (Blair, Parmelee, and Beare 1990; Wardle, Bonner, and Nicholson 1997; Finzi and Canham 1998; Nilsson, Wardle, and
Dahlgren 1999; Eviner 2001) to plant growth (Newman et al. 1979; Lawley, Newman, and Campbell 1982; Lawley, Campbell, and Newman 1983; Nilsson, Wardle, and Dahlgren 1999). Just as the ecosystem effects of a species depends on an interaction of traits that a given species exhibits, these trait combinations have the same effect on biogeochemical cycling when they are due to the mixture of multiple species, each of which exhibits some of these traits (Eviner 2001). Some trait combinations, however, are unique to species mixtures, seldom occurring within a single plant species (e.g., litter with recalcitrant C and high N content). Nonadditive effects of species mixtures are mediated by an interaction of particular traits of particular species, not simply by a diversity of traits. Nonadditive effects of species mixtures can also be due to shifts in species traits resulting from the identity of the neighboring species. For example, nonadditive effects of plant mixtures on N cycling in California annual grasslands relate to shifts in litter quantity and quality, labile C inputs, and microclimate effects when species are grown in mixture versus monoculture (Eviner 2001). Nonadditive effects of plant mixtures can also be mediated through shifts in the activity and distribution of other organisms that play key roles in biogeochemical cycling (Blair, Parmelee, and Beare 1990; Williams and Alexander 1991). For example, N and C dynamics in plant mixtures were nonadditive functions of the component monocultures because earthworms responded nonlinearly to the plant mixtures (Saetre 1998).

All of these examples demonstrate that the rates and interactions of biogeochemical cycles can best be understood by focusing on the composition of organisms and the traits they exhibit, not simply on species number, because combinations of specific organismal traits mediate elemental fluxes.

Interactions between Biodiversity and Biogeochemical Interactions

Ultimately, an interaction of species and biogeochemical cycles determines ecosystem processes, and species diversity can influence ecosystem responses to biogeochemical changes by influencing the pool of species that can respond to varying conditions. For example, high-diversity plant communities have a higher enhancement of net primary production (NPP) in response to elevated CO$_2$ (Niklaus et al. 2001a; Reich et al. 2001; He, Bazzaz, and Schmid 2002) and N (Fridley 2002; He, Bazzaz, and Schmid 2002) than low-diversity communities. Plant richness, however, does not always enhance ecosystem CO$_2$ assimilation (Stocker et al. 1999), and species composition plays an important role in determining these responses. The diversity-induced enhancement of NPP in response to elevated CO$_2$ in a calcareous grassland only occurred in the early years of the experiment, when CO$_2$ increased growth of stress-tolerant, noncompetitive
species. These species decreased over time in the elevated CO$_2$ plots (Niklaus et al. 2001a), and with this shift in plant composition, the diversity-CO$_2$ interaction disappeared.

These studies clearly show that communities with high species richness are more likely to contain species that can positively respond to enhanced resource availability. A natural extension of this logic would suggest that a loss of species richness could compromise ecosystem function in response to environmental stresses owing to the presence of fewer species able to tolerate the stressful conditions. Many studies have shown that decreases in diversity in response to a single environmental stress do not compromise ecosystem function, because of the ability of other species to compensate for the function of the lost species. Several studies have shown, however, that these less diverse microbial communities cannot maintain ecosystem function in response to additional environmental stresses (Griffiths et al. 2000; Degens et al. 2001; Muller et al. 2002) and are also less able to respond to subsequent positive changes, such as additions of labile substrates (Muller et al. 2002). These results are particularly striking because all three of these examples are from soil microbial communities, which are assumed to contain ample diversity to buffer any change and still maintain function.

These studies emphasize that, although several species may be able to play the same ecosystem role under stable conditions, a diversity of organisms is critical for maintaining that ecosystem role under changing conditions, and loss of diversity can dramatically compromise ecosystem function. This decreased function occurs because species that have similar functions can have very different environmental tolerances. Thus one environmental stress can decrease diversity through selection for species with specific tolerances, compromising the ability of the remaining community to respond to another stress.

It is essential to consider the relative importance of changes in biogeochemical processes versus shifts in diversity on ecosystem processes. For example, there has been much debate over the importance of plant species richness to productivity. Although experimental evidence has indicated that species richness can positively affect production, cross-site comparisons of natural communities usually indicate that the productivity-diversity relationship is a bell-shaped curve (Huston 1997; Wardle 2001). In extreme resource-limited environments, both productivity and species richness tend to be low and are limited by the same resources. Both species richness and productivity increase in ecosystems with moderate resource availability. In systems with extremely high resource availability, productivity is high, but species richness tends to be low. In low-resource or extreme environments, there are not many organisms that can cope with the conditions that limit production. At the other extreme, high N availability in terrestrial environments strongly selects for species that are fast growing and highly com-
petitive. A similar trend would be expected in many aquatic systems in response to P availability. Over fluctuating conditions, a diversity of plants allows production to be somewhat stabilized by providing species that can tolerate these varying conditions. Sustained differences in environmental conditions, however, can strongly select for species that are best adapted to those conditions, decreasing diversity. These communities may be optimized to their current conditions but may also have less flexibility in the face of other environmental changes.

Conclusion

In this chapter we have given numerous examples where species composition and richness alter biogeochemical processes. In processes influenced by resource use, complementarity of species functions can account for the effects of species richness, but the strength of this effect is determined by the extent to which species differ in their functional traits. Overall, the composition of the biotic community plays a much stronger role than species richness in determining biogeochemical cycling. The importance of composition is further highlighted because shifts in the biotic community due to biogeochemical changes alter species richness through selection for certain species. Suites of organismal traits determine elemental stoichiometry and environmental tolerances of species, which then determine how element cycles interact. For example, plant species can differ significantly in their effects on environmental conditions and the stoichiometry of elements. These suites of traits greatly affect the activity and composition of the consumer communities. The elemental composition of the consumer community dictates the stoichiometry and rates of nutrient release from plant litter, and the processes mediated by the microbial community are sensitive to the relative availability of elements. Thus, organism-induced variation in nutrient forms and concentrations can differentially affect almost every biogeochemical flux.

The vast majority of research linking species diversity and ecosystem processes has focused on this relationship under a relatively constant set of conditions. In these experimental communities the effect of species richness on ecosystem processes saturates at a low species number, and species composition tends to have a larger effect than species richness. Ecological theory, and a handful of experiments that have tested it, show that over changing conditions, the maintenance of ecosystem processes depends on a diversity of species. Species have unique combinations of functions, environmental preferences, and species interactions, and this suite of traits determines how a species responds and maintains itself, its functions, and its interactions under different conditions. There is very little true redundancy in the overall role played by species when accounting for these suites of traits.
Acknowledgments

Our thanks go to Jill Baron and Osvaldo Sala for helpful comments on an earlier draft. This work is a contribution to the program of the Institute of Ecosystem Studies.

Literature Cited

elevated CO₂ on the metabolic diversity of microbial communities in N-limited grass
Griffiths, B. S., K. Ritz, R. D. Bardgett, R. Cook, S. Christensen, F. Ekelund, S. J.
Ecosystem response of pasture soil communities to fumigation-induced microbial
diversity reductions: An examination of the biodiversity–ecosystem function relation-
Groffman, P. M., and P. J. Bohlen. 1999. Soil and sediment biodiversity: Cross-system
Grosse, W., K. Jovy, and H. Tiebel. 1996. Influence of plants on redox potential and
Global warming and soil microclimate—results from a meadow-warming experiment.
Ecological Applications 5:132–150.
Harte, J., and R. Shaw. 1995. Shifting dominance within a montane vegetation
He, J. S., F. A. Bazzaz, and B. Schmid. 2002. Interactive effects of diversity, nutrients
of the reduction of plant diversity for litter decomposition: Effects through litter qual-
Hobbs, S. 1996. Temperature and plant species control over litter decomposition in
Hoffman, B. D., A. D. Griffiths, and A. N. Andersen. 2000. Responses of ant commu-
nitites to dry sulfur deposition from mining emissions in semi-arid tropical Australia,
Heavy metals tolerance of soil denitrifying communities: N₂O dynamics. *Soil Biology
and Biochemistry* 34:1181–1190.
Hooper, D., and P. Vitousek. 1998. Effects of plant composition and diversity on nutrient
Hueneke, L., S. Hamburg, R. Koide, H. A. Mooney, and P. Vitousek. 1990. Effects of
soil resources on plant invasion and community structure in Californian serpentine
microbiota in two annual grasslands: Responses to elevated atmospheric CO₂. *Oecolo-
gia* 124:589–598.
Huston, M. A. 1997. Hidden treatments in ecological experiments: Re-evaluating the
Inouye, R., and D. Tilman. 1995. Convergence and divergence of old-field vegetation
on decomposition processes: Decomposition of barley straw by *Phanerochaete
chrysosporium* or *Phlebia radiata* in pure or mixed culture. *Soil Biology and

Schimel, J., K. Van Cleve, R. Cates, T. Clausen, and P. Reichardt. 1996. Effects of balsam poplar (*Populus balsamifera*) tannins and low molecular weight phenolics on

Tilman, D. 1999. Global environmental impacts of agricultural expansion: The need for

